	$y = x^3 + 3x^2 - 6x - 8$	$Y = x^3 - 5x^2 + 16x - 80$
Graphically: Note: x-intercepts are called real roots.	Polynomial degree	Polynomial degree
	Number of x-intercents	Number of x intercents
Algebraically: Write each equation in fully factored form.		
X-intercepts are called "real roots". Each real root has a factor, as we can see above. The question, how do we factor an equation and write it in fully factored form if there are non- real roots?		Using the zero product property and our new imaginary number, i we can find non-real roots, which are called complex roots . Solve: $0 = x^2 + 16$
		Now write the fully factored form of Y = x ³ - 5x ² + 16x - 80 Y = ()()()

What are complex roots? Compare these two polynomials.

Graph and write the equations of these parabolas in fully factored form:

Writing standard form quadratic equations with complex roots:

Example: Write the equation of the parabola with complex roots at 7i and -7i.

Step 1: Write the factored form: _____

Step 2: Multiply the factors:

Step 3: Write the equation: _____

Reflection:

1. How can you determine if a polynomial will have complex roots from a graph?

2. How can you determine if a polynomial will have complex roots from an equation?

AA7-2 Complex roots:

Name _____

Check for Understanding:

Which equations will have complex roots:

 $y = x^2 + 51$ $y = x^2 - 25$ $y = -x^2 - 13$ $y = -x^2 + 42$

Practice: C-Level

1) Rewrite each equation in fully factored form.

a)
$$y = x^2 + 36$$
 b) $y = 2x^2 + 50$

c)
$$y = x^2 + 27$$
 d) $y = x^2 + 98$

- 2) Find the equation of a quadratic that has the following roots.
- a) complex roots at: 3i and -3i b) complex roots at: 2i and -2i

Standard form: _____

Factored form:	

Standard form: _____

Factored form: _	Factored form:			
Standard form:	Standard form:			
Practice B-Level				

3) Rewrite each equation in fully factored form.

a) $y = x^3 + 5x^2 + 9x + 45$ with a root at (-5,0) b) $y = -x^3 - 5x^2 - 16x - 80$ with a root at (-5,0)

4) Find the equation of a quadratic that has complex roots at: 5 + i and 5 - i

Factored form:_____

Standard form: _____

Looking ahead: Find the complex roots of: $y = x^2 - 4x + 5$